Physics 216 Mathematical Physics
 Quiz 1, October 17, 2016, Time: 90 minutes

Solve 8 problems out of 10 (12.5 points for each)

1. Let $\left\{\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right\}$ be a basis of a three dimensional vector space V which are mapped by the operator T to the vectors $\left\{\vec{e}_{1}^{\prime}, \vec{e}_{2}^{\prime}, \vec{e}_{3}^{\prime}\right\}$ defined by $T \vec{e}_{i}=\sum_{j=1}^{3} T_{j i} \vec{e}_{j}$ such that $\vec{e}_{1}^{\prime}=\vec{e}_{1}+\vec{e}_{3}$, $\vec{e}_{2}^{\prime}=2 \vec{e}_{1}+\vec{e}_{2}, \vec{e}_{3}^{\prime}=3 \vec{e}_{2}+\vec{e}_{3}$. Find the matrix representation of T with respect to the basis $\left\{\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right\}$ and show that the set $\left\{\vec{e}_{1}^{\prime}, \vec{e}_{2}^{\prime}, \vec{e}_{3}^{\prime}\right\}$ is also a basis.
2. Consider the two vectors $\vec{u}=(1,3-i, 2+i)$ and $\vec{v}=(3,1+i, 2 i)$ in the vector space \mathbb{C}^{3}. Find $(\vec{u}, \vec{v}),(\vec{v}, \vec{u}),\|\vec{u}\|,\|\vec{v}\|,|(\vec{u}, \vec{v})|$. Verify that $\|(\vec{u}, \vec{v})\| \leq\|\vec{u}\|\|\vec{v}\|$.
3. Let $A=\left(\begin{array}{ccc}2 & 3 & -4 \\ 0 & -4 & 2 \\ 1 & -1 & 5\end{array}\right)$. Find $\operatorname{det} A$ and list the cofactors of the 9 elements of A to deduce $\operatorname{adj}(A)$ the classical adjoint matrix of A and the inverse matrix A^{-1}.
4. Consider the Hermitian matrix $A=\left(\begin{array}{cc}1 & 2-i \sqrt{2} \\ 2+i \sqrt{2} & 2\end{array}\right)$. Find the eigenvalues and normalized eigenvectors of A. Construct the diagonalizing matrix P.
5. Consider the operators $L_{1}=-i\left(x^{2} \frac{\partial}{\partial x^{3}}-x^{3} \frac{\partial}{\partial x^{2}}\right), L_{2}=-i\left(x^{3} \frac{\partial}{\partial x^{1}}-x^{1} \frac{\partial}{\partial x^{3}}\right), L_{1}=-i\left(x^{1} \frac{\partial}{\partial x^{2}}-x^{3} \frac{\partial}{\partial x^{1}}\right)$. Show that the commutaor $\left[L_{1}, L_{2}\right] f\left(x^{1}, x^{2}, x^{3}\right)=i L_{3} f\left(x^{1}, x^{2}, x^{3}\right)$.
6. Prove the identity $\vec{L}=-i \vec{r} \times \vec{\nabla}=i\left(\widehat{\theta} \frac{1}{\sin \theta} \frac{\partial}{\partial \varphi}-\widehat{\varphi} \frac{\partial}{\partial \varphi}\right)$, where \vec{L} is the angular momentum. Evaluate $-\frac{i}{r^{2}} \vec{r} \times \vec{L}$ to deduce that $\vec{\nabla}=\widehat{r} \frac{\partial}{\partial r}-\frac{i}{r^{2}} \vec{r} \times \vec{L}$.
7. Let $\vec{V}=\frac{x}{\sqrt{x^{2}-y^{2}}} \vec{i}+\frac{y}{\sqrt{x^{2}-y^{2}}} \vec{j}, x>y$. Show that \vec{V} is a conservative field and thus could be written as $\vec{\nabla} \phi$. Evaluate the line integral $\int_{C} \vec{V} \cdot \overrightarrow{d r}$ where C is a curve in the $x y$ plane connecting the points $(1,0)$ and (x, y). Deduce from this the function $\phi(x, y)$. Hint: Use $x=r \cosh \theta, y=r \sinh \theta$.
8. Let $\vec{V}=x y \vec{i}+z^{2} \vec{j}+2 y z \vec{k}$. Evaluate the surface integral $\oint_{S} \vec{V} \cdot d \vec{a}$ where S is the surface of a cube $0 \leq x, y, z \leq 1$. Verify Gauss' law by evaluating the volume integral $\int_{V} \vec{\nabla} \cdot \vec{V} d x d y d z$ where V is the volume bounded by the surface S.
9. Let $\vec{V}=y^{2} \vec{i}+x y \vec{j}+x z \vec{k}$. Evaluate the surface integral $\int_{S}(\vec{\nabla} \times \vec{V}) \cdot d \vec{a}$ where S is the upper hemisphere with equation $z=R^{2}-x^{2}-y^{2}, z \geq 0$ bounded by the circle C defined by $x^{2}+y^{2}=R^{2}$. Verify Stokes' theorem by evaluating the line integral $\oint_{C} \vec{V} \cdot d \vec{r}$. Hint: Write $d \vec{a}=R^{2} \sin \theta d \theta d \varphi \widehat{r}$ in spherical coordinates.
10. Verify the vector relation $\vec{\nabla} \cdot(\vec{A} \times \vec{B})=-\vec{A} \cdot(\vec{\nabla} \times \vec{B})+\vec{B} \cdot(\vec{\nabla} \times \vec{A})$.
